
Micromega Corporation 1 R20041015

Using the uM-FPU
with the PICmicro®

Introduction

The uM-FPU is a 32-bit floating point coprocessor that can be easily interfaced with the Microchip
PICmicro® family of microcontrollers to provide support for 32-bit IEEE 754 floating point operations and
long integer operations. The uM-FPU is easy to connect, using two output pins and one input pin. There
are no external components required.

uM-FPU Features

 8-pin integrated circuit.
 No additional external components
 SPI compatible interface
 Sixteen 32-bit general purpose registers for storing floating point or long integer values
 Five 32-bit temporary registers with support for nested calculations (i.e. parenthesis)
 Floating Point Operations

 Set, Add, Subtract, Multiply, Divide
 Sqrt, Log, Log10, Exp, Exp10, Power, Root
 Sin, Cos, Tan
 Asin, Acos, Atan, Atan2
 Floor, Ceil, Round, Min, Max, Fraction
 Negate, Abs, Inverse
 Convert Radians to Degrees
 Convert Degrees to Radians
 Compare, Status

 Long Integer Operations
 Set, Add, Subtract, Multiply, Divide, Unsigned Divide
 Negate, Abs
 Compare, Unsigned Compare, Status

 Conversion Functions
 Convert 8-bit and 16-bit integers to floating point
 Convert 8-bit and 16-bit integers to long integer
 Convert long integer to floating point
 Convert floating point to long integer
 Convert floating point to ASCII
 Convert floating point to formatted ASCII
 Convert long integer to ASCII
 Convert long integer to formatted ASCII
 Convert ASCII to floating point
 Convert ASCII to long integer

 Full set of PIC assembly support routines provided for easy implementation.

Connecting

Micromega Corporation 2 Using the uM-FPU with the PICmicro®

Connecting the uM-FPU to the Microchip PICmicro®

The uM-FPU requires two output pins and one input pin for interfacing to the Microchip PICmicro®. The
communication is implemented using a SPI interface with the following connections:

FPU_CLOCK clock
FPU_DATAOUT data from PIC to uM-FPU
FPU_DATAIN data from uM-FPU to PIC

Either a 2-wire or 3-wire SPI connection can be used, but this document, and the sample routines, use a 3-
wire connection and assume the uM-FPU chip is always selected (as shown below). The pin assignments
can be changed to suit your application.

uM-FPU Pin Assignment

Floating Point Routines

Micromega Corporation 3 Using the uM-FPU with the PICmicro®

Using the uM-FPU Floating Point Routines

A full set of assembler support routines is provided to handle all of the communication between the PIC
and the uM-FPU. The routines are designed for use with the MPLAB IDE using the MPASM Assembler
and MPLINK Object Linker. The routines could easily be adapted to other assemblers. The interface files
are as follows:

umfpu.asm High level routines for each uM-FPU function
umfpu.inc Include file containing definitions for each function
fpusw_4.asm Low level interface routines using software(bit-bang) SPI, 4 MHz
fpusw_20.asm Low level interface routines using software(bit-bang) SPI, 20 MHz
fpuhw_4.asm Low level interface routines using hardware SPI, 4 MHz
fpuhw_20.asm Low level interface routines using hardware SPI, 20 MHz
delay_4.asm Delay routine, 4 Mhz
delay_20.asm Delay routine, 20 Mhz
serial.asm Serial port routines to print data

MPLAB project files and linker files are provided for each of the sample applications. The files can be used
directly to test the sample applications, or used as the starting point for a new program. Each uM-FPU
support routine is described in the reference guide included as Appendix A of this document.

In order to ensure that the PIC and the uM-FPU coprocessor are synchronized, the reset routine must be
called at the start of every program. This routine sets up the input/output pins and resets the uM-FPU. It is
called as follows:

call fpu_reset ;reset the uM-FPU coprocessor

The uM-FPU contains sixteen 32-bit registers, numbered 0 through 15, which are used to store floating
point or long integer values. Register 0 is reserved for use as a working register and is modified by some of
the uM-FPU operations. Registers 1 through 15 are available for general use.

Arithmetic operations on the uM-FPU are defined in terms of A and B registers. For example:

FADD A = A + B
FDIV A = A / B
SQRT A = sqrt(A)
SIN A = sin(A)

To perform an operation, the appropriate function is called. For example:

call sqrt ;A = SQRT(A)

Any of the sixteen registers can be selected as the A or B registers. Two variables called regA and regB are
used to specify the current register values. Macros SELECTA and SELECTB are used to set these
variables. For example:

selectA 1 ;select Register 1 as A register

The B register is automatically selected by many of the uM-FPU commands. Since the interface routines
set the regB variable appropriately, a separate SELECTB call is often not required.

The following code adds register 2 to register 1.

selectA 1 ;select Register 1 as A register
selectB 2 ;select Register 2 as B register
call fadd ;A = A + B

Floating Point Routines

Micromega Corporation 4 Using the uM-FPU with the PICmicro®

Using symbol definitions to provide meaningful names for the uM-FPU registers creates a more readable
program. The following code is the same as above, but uses symbol names.

#define Total 1 ;total amount (uM-FPU register 1)
#define Value 2 ;current value (uM-FPU register 2)

selectA Total ;Select Total as A register
selectB Value ;Select Value as B register
call fadd ;Total = Total + Value

The following floating point routines are provided:

fset A = B
fadd A = A + B
fsub A = A – B
fmul A = A * B
fdiv A = A / B

abs A = |A|
acos A = acos (A)
asin A = asin(A)
atan A = atan(A)
atan2 A = atan2(A)
ceil A = ceil(A)
cos A = cos(A)
exp A = exp(A)
exp10 A = exp10(A)
fcompare Compare A and B
fix A = fix(B)
floor A = floor(A)
fraction register 0 = fractional part of A
fread Read the value of A
fstatus Get the floating point status of A
inverse A = 1 / A
log A = log(A)
log10 A = log10(A)
max A = maximum of A and B
min A = minimum of A and B
negate A = -A
pow A = A to the power of B
root A = the Bth root of A
round A = round(A)
sin A = sin(A)
sqrt A = sqrt(A)
tan A = tan(A)
degrees Convert radians to degrees
radians Convert degrees to radians

Floating Point Routines

Micromega Corporation 5 Using the uM-FPU with the PICmicro®

The following example implements the equation Z = SQRT(X**2 + Y**2). The equation is broken into
several steps: the X value is squared (multiplied by itself), the Y value is squared, the Z value is set to the
sum of the squares, and the square root function is called to get the final result.

#define Xvalue 1 ;X value (uM-FPU register 1)
#define Yvalue 2 ;Y value (uM-FPU register 2)
#define Zvalue 3 ;Z value (uM-FPU register 3)

selectA Xvalue ;X = X ** 2
selectB Xvalue
call fmul

selectA Yvalue ;Y = Y ** 2
selectB Yvalue
call fmul

selectA Zvalue ;Z = X + Y
selectB Xvalue
call fset
selectB Yvalue
call fadd

call sqrt ;Z = sqrt(Z)

The value of A register is not changed by the uM-FPU support routines. If multiple operations are
performed on the same register it isn’t necessary to select it each time, only when it needs to change. For
example:

selectA Result ;Result = sqrt(Value1 + Value2 + Value3)
selectB Value1
call fset
selectB Value2
call fadd
selectB Value3
call fadd
call sqrt

Floating Point Routines

Micromega Corporation 6 Using the uM-FPU with the PICmicro®

Alternate Floating Point Format

Several compilers for the PICmicro® use a slightly modified version of the standard IEEE 754 floating
point format. The alternate format is shown below:

Exponent S MantissaExponent S Mantissa

31 24 23 022

The uM-FPU uses the standard IEEE 754 format (as described in Appendix C) by default, but it can also
support the alternate PIC format. To use the alternate PIC format, the following function call should be
made immediately after a reset:

call picmode

All internal data on the uM-FPU is still stored in standard IEEE 754 format, but when the uM-FPU is in
PIC mode an automatic conversion is done by the writeA, writeB and read functions so the PIC program
can store floating point data in the alternate format.

Loading Floating Point Values

The MPASM assembler does not provide support for floating point number syntax, so floating point values
must be entered using alternate methods. There are several ways to load floating point values into the uM-
FPU. Functions are provided to:

load_floatByte Load 8-bit signed integer and convert to floating point
load_floatUbyte Load 8-bit unsigned integer and convert to floating point
load_floatword Load 16-bit signed integer and convert to floating point
load_floatUword Load 16-bit unsigned integer and convert to floating point
load_zero Load the floating point value 0.0
load_one Load the floating point value 1.0
load_e Load the floating point value of e (2.7182818)
load_pi Load the floating point value of pi (3.1415927)

The ATOF instruction can also be used to send an ASCII string to the uM-FPU which is converted to a
floating point number.

Load a signed byte value:
call load_floatByte ;load 10, convert to float
movlw .10 ;send byte value
call fpu_sendByte

Load an unsigned word value:
call load_floatUword ;load unsigned word, convert to float
movf HIGH sensorValue ;send word value MSB first
call fpu_sendByte
movf LOW sensorValue
call fpu_sendByte

Load Zero:
call load_zero ;load register 0 with 0.0

Load Pi:
call load_pi ;load register 0 with 3.1415927

Floating Point Routines

Micromega Corporation 7 Using the uM-FPU with the PICmicro®

Floating point numbers are 32-bit values. (Appendix C describes the IEEE 754 32-bit floating point number
format.) The easiest way to load a 32-bit floating point value is to use two 16-bit hexadecimal values. A
handy utility program called uM-FPU Converter is available to convert between 32-bit floating point
values and hexadecimal values. The fwriteA and fwriteB functions are used to load 32-bit values.

Load a floating point value directly in code:
selectB Angle ;select Angle as B register
call writeB ;write 32-bit value to register
movlw 0x41 ;(floating point value 20.0)
call fpu_sendByte
movlw 0xA0
call fpu_sendByte
movlw 0x00
call fpu_sendByte
movlw 0x00
call fpu_sendByte

Since each of these commands sets the B register value, arithmetic operations can immediately follow the
load command. For example:

selectA Angle ;Angle = Angle / pi
call load_pi
call fdiv

selectA Value ;Value = Value + 2
call load_floatByte
movlw .2
call fpu_sendByte
call fadd

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code, floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. For example, the load_floatByte function requires an additional 8-bit
value, load_floatWord requies two 8-bit values, and writeA and writeB requires four 8-bit values.
Minimizing the amount of data transfer will maximize the execution speed of your program.

Floating Point Routines

Micromega Corporation 8 Using the uM-FPU with the PICmicro®

Comparing and Testing Floating Point Values

A floating point value can be positive zero, negative zero, positive non-zero, negative non-zero, positive
infinite, negative infinity or Not a Number (which occurs if an invalid operation is performed on a floating
point value). The following symbols define the floating point status bits:

status_Zero Zero bit (0 – not zero, 1 – zero)
status_Sign Sign bit (0 – positive, 1 – negative)
status_NaN Not-a-Number (0 – valid number, 1 – NaN)
status_Zero Infinity (0 – not infinite, 1 – infinite)

The fstatus command is used to check the status of a floating point number. For example:
call fstatus ;check status of A register
btfsc status_Zero
goto zeroValue
btfsc status_Sign
goto negativeValue

;value is positive
 …

negativeValue:
;value is negative
 …

zeroValue:
;value is zero
 …

The fcompare command is used to compare two floating point values. The status bits are set for the
results of the operation A – B. (The selected A and B registers are not modified). For example:

call fcompare ;compare A and B registers
btfsc status_Zero
goto sameAs
btfsc status_Sign
goto lessThan

;A > B
 …

lessThan
;A < B"
 …

sameAs
;A = B
 …

Long Integer Routines

Micromega Corporation 9 Using the uM-FPU with the PICmicro®

Using the uM-FPU Long Integer Routines

Any of the sixteen uM-FPU registers can be used to store long integer values. The support routines for
long integers work in exactly the same manner as the floating point routines and are defined in terms of the
A and B registers. For example:

#define Total 1 ;total amount (uM-FPU register 1)
#define Value 2 ;current count (uM-FPU register 2)

selectA Total ;Total = Total + Value
selectB Value
call ladd

The following long integer routines are provided:

lset A = B
ladd A = A + B
lsub A = A – B
lmul A = A * B
ldiv A = A / B
ludiv A = A / B (unsigned)

float A = float(A)
labs A = |A|
lcompare Compare A and B
lstatus Get the long integer status of A
lnegate A = -A
lucompare Compare A and B (unsigned)

Loading Long Integer Values

There are several ways to load long integer values into the uM-FPU. Commands are provided to:
load_longByte Load 8-bit signed integer and convert to long integer
load_longUbyte Load 8-bit unsigned integer and convert to long integer
load_longWord Load 16-bit signed integer and convert to long integer
load_longUword Load 16-bit unsigned integer and convert to long integer
load_zero Load the long integer value 0

The ATOL instruction can also be used to send an ASCII string to the uM-FPU which is converted to a
long integer number.

Load a byte value:
call load_longByte ;load byte value, convert to long
movf n, w ;(where n is a byte variable)
call fpu_sendByte

Load Zero:
call load_zero ;load register 0 with 0.0

Load a long value directly in code:
selectB Value ;select Value as B register
call lwriteB ;write 500,000 (7A120 hex) to register
movlw 0x00
call fpu_sendByte
movlw 0x07

Long Integer Routines

Micromega Corporation 10 Using the uM-FPU with the PICmicro®

call fpu_sendByte
movlw 0xA1
call fpu_sendByte
movlw 0x20
call fpu_sendByte

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical
portions of code floating point constants should be loaded beforehand to maximize the processing speed in
the critical section. With fifteen registers available for storage on the uM-FPU, it is often possible to
preload all of the required constant values. Since the load routines must send data to the uM-FPU for
conversion, there is additional overhead associated with each type of load. The majority of the overhead is
associated with the data transfer. The load_longByte routine transfers an additional 8-bit value, the
load_longWord routine transfers two 8-bit values, and the lwriteA and lwriteB routines transfer four 8-bit
values. Minimizing the amount of data transfer will maximize the execution speed of your program.

Comparing and Testing Long Integer Values

A long integer value can be zero, positive, or negative. The following symbols define the long status bits:

status_Zero Zero bit (0 – not zero, 1 – zero)
status_Sign Sign bit (0 – positive, 1 – negative)

The lstatus command is used to check the status of a long integer number. For example:

call lstatus ;check status of A register
btfsc status_Zero
goto zeroValue
btfsc status_Sign
goto negativeValue

;value is positive
 …

negativeValue:
;value is negative
 …

zeroValue:
 …

The lcompare and lucompare commands are used to compare two long integer values. The status bits
being set for the results of the operation A – B. (The selected A and B registers are not modified).
lcompare does a signed compare and the lucompare does an unsigned compare. For example:

call lcompare ;compare A and B registers
btfsc status_Zero
goto sameAs
btfsc status_Sign
goto lessThan

;A > B
 …

lessThan
;A < B"
 …

sameAs
;A = B
 …

Left and Right Parentheses

Micromega Corporation 11 Using the uM-FPU with the PICmicro®

Left and Right Parenthesis

Mathematical equations are often expressed with parenthesis to define the order of operations. For
example Y = (X-1) / (X+1). The expressions inside the parentheses often need to be assigned to a
temporary value before they can be used with other expressions in the equation. Temporary values are also
useful to preserve the original value of a variable used in an equation. The left and right parenthesis
functions provide a convenient means of allocating temporary values.

When a left parenthesis is issued, the current A register selection is saved and a new value is assigned that
references a temporary register. Operations can now be performed as normal with the temporary register
selected as the A register. When a right parenthesis is issued, the current value of the A register is copied
to register 0, register 0 is selected as the B register, and the previous A register selection is restored. The
register 0 value can be used immediately in subsequent operations. Up to five levels of parentheses can be
used. The regA variable should not generally be changed by the user inside parentheses since regA is set
automatically by the left and right functions.

In the example shown earlier for the equation Z = sqrt(X**2 + Y**2), the values of X and Y were
modified during the calculation. Using parentheses, it’s easy to implement the equation while retaining the
original values of X and Y. For example:

#define Xvalue 1 ;X value (uM-FPU register 1)
#define Yvalue 2 ;Y value (uM-FPU register 2)
#define Zvalue 3 ;Z value (uM-FPU register 3)

;Z = sqrt(X**2 + Y**2)
;---------------------
selectA Zvalue ;Zvalue = Xvalue ** 2
selectB Xvalue
call fset
call fmul

call left ;temp1 = Yvalue ** 2
selectB Yvalue
call fset
call fmul

call right ;Zvalue = Zvalue + temp1
call fadd

call sqrt ;Zvalue = sqrt(Zvalue)

Left and Right Parentheses

Micromega Corporation 12 Using the uM-FPU with the PICmicro®

Another example:

;Y = 10 / (X + 1)
;----------------
selectA Yvalue ;Yvalue = 10
call load_floatByte
movlw .10
call fpu_sendByte
call fset

call left ;temp1 = Xvalue + 1
selectB Xvalue
call fset
call load_one
call fadd

call right ;Yvalue = Yvalue / temp1
call fdiv

Print Routines

Micromega Corporation 13 Using the uM-FPU with the PICmicro®

Print routines

There are several print routines provided to display values by sending ASCII character strings to the serial
port on the PIC. These routines could be used as templates to develop routines for other output devices
(e.g. LCD screen).

print_float send a floating point value to the serial port
print_floatFormat send a formatted floating point value to the serial port
print_long send a signed long integer to the serial port
print_longFormat send a formatted long integer to the serial port
print_fpuString send a string read from the uM-FPU to the serial port

The following examples assume that Angle contains the floating point value 3.1415927 and Total contains
the long integer value –2000.

selectA Angle ;select Angle as A register
call print_float ;displays Angle in default float format

Value displayed: 3.1415927

movlw .64 ;display Angle in 6.4 float format
call print_floatFormat

Value displayed: 3.1416

selectA Total ;select Total as A register
call print_long ;displays Total in default long format

Value displayed: -2000

movlw .10 ;display Total in long format
call print_longFormat ;signed, width of 10

Value displayed: -2000

movlw .110 ;display Total in long format
call print_longFormat ;unsigned, width of 10

Value displayed: 4294965296

Additional general purpose print routines are also provided:

print_string send a string read from ROM to the serial port
print_hex32 send a 32-bit hex string to the serial port
print_hex send an 8-bit hex string to the serial port
print_hexDigit send a 4-bit hex digit to the serial port
print_crlf send a CRLF to the serial port
print_byte send an 8-bit byte to the serial port

Sample Code

Micromega Corporation 14 Using the uM-FPU with the PICmicro®

Sample Code

;--
;The following example takes an integer value representing the diameter
;of a circle in millimeters, converts the value to centimeters and
;calculates the circumference and area. For example, the inputValue
;could be a value read from a distance finding sensor. A description of
;each step of the calculations is provided
;--

list p=16f877
#include <p16f877.inc>

#include umfpu.inc ;uM-FPU function definitions
extern print_setup, print_string, print_floatFormat

;-------------------- uM-FPU register definitions ---------------------

#define Diameter 4 ;diameter (uM-FPU register 4)
#define Circumference 5 ;circumference (uM-FPU register 5)
#define Area 6 ;area (uM-FPU register 6)

;-------------------- variables ---------------------------------------
udata

inputValue res 1 ;diameter in centimeters

;-------------------- string definitions ------------------------------
STRINGS code

global stringTable
stringTable

addwf PCL,f ;computed goto for strings

diameterMessage
dt 0x0D, 0x0A, "Diameter (in.): ", 0

circumferenceMessage
dt 0x0D, 0x0A, "Circumference (in.): ", 0

areaMessage
dt 0x0D, 0x0A, "Area (sq.in.): ", 0

;-------------------- reset and interrupt vector ----------------------
STARTUP code

nop ;reset vector
 goto main

nop
nop
goto isr ;interrupt vector

;-------------------- interrupt service routine -----------------------
PROG1 code
isr

retfie ;(no interrupts used)

Sample Code

Micromega Corporation 15 Using the uM-FPU with the PICmicro®

;==
;==================== main routine ====================================
;==

main
call print_setup ;setup the serial port

call fpu_reset ;reset the uM-FPU

;get input value
;---------------
movlw .250 ;(e.g. read a sensor)
movwf inputValue

;Diameter = inputValue / 10 (convert to centimeters)
;---

selectA Diameter ;select Diameter as A register
call load_floatUbyte ;load unsigned byte value into Register 0
movf inputValue, w ; and convert to floating point
call fpu_sendByte
call fset ;Diameter = inputValue

call load_floatByte ;load 10 into Register 0
movlw .10 ; and convert to floating point (10.0)
call fpu_sendByte
call fdiv ;Diameter = Diameter / 10.0

movlw LOW diameterMessage ;display diameter
call print_string
movlw .92 ;print as 9.2 floating point format
call print_floatFormat

;Circumference = Diameter * pi
;-----------------------------
selectA Circumference ;select Circumference as A register
selectB Diameter ;select Diameter as B register
call fset ;Circumference = Diameter

call load_pi ;load the value of pi into Register 0
call fmul ;Circumference = Circumference * pi

movlw LOW circumferenceMessage ;display circumference
call print_string
movlw .92 ;print as 9.2 floating point format
call print_floatFormat

;Area = (Diameter / 2)^2 * pi
;----------------------------
selectA Area ;select Area as register A
selectB Diameter ;select Diameter as B register
call fset ;Area = Diameter

call load_floatByte ;load 2 into Register 0
movlw .2 ; and convert to floating point (2.0)
call fpu_sendByte

Sample Code

Micromega Corporation 16 Using the uM-FPU with the PICmicro®

call fdiv ;Area = Area / 2.0
selectB Area ;select Area as B register
call fmul ;Area = Area * Area

call load_pi ;load the value of pi into Register 0
call fmul ;Area = Area * pi

movlw LOW areaMessage ;display area
call print_string
movlw .92 ;print as 9.2 floating point format
call print_floatFormat

end

Micromega Corporation 17 R20041015

Appendix A
Reference for uM-FPU PICmicro® routines

Initialization Routine
fpu_reset Reset the uM-FPU

Data Transfer Routines
fpu_readByte Get byte from the uM-FPU
fpu_sendByte Send byte to the uM-FPU

Print Routines
print_float Print free format floating point value
print_floatFormat Print formatted floating point value
print_long Print free format long value
print_longFormat Print formatted long value

Variables used as parameters
dataByte 32-bit variable

Set by the following functions:
read 32-bit floating point value in dataByte to dataByte+3
sync 8-bit sync character in dataByte
fcompare 8-bit compare status byte in dataByte
fstatus 8-bit status byte in dataByte
lread 32-bit long integer value in dataByte to dataByte+3
lcompare 8-bit compare status byte in dataByte
lucompare 8-bit compare status byte in dataByte
lstatus 8-bit status byte in dataByte

Status Bits
status_Zero Zero bit (0 – not zero, 1 – zero)
status_Sign Sign bit (0 – positive, 1 – negative)
status_NaN Not-a-Number (0 – valid number, 1 – NaN)
status_Zero Infinity (0 – not infinite, 1 – infinite)

Appendix A – Reference for PICmicro® routines

Micromega Corporation 18 Using the uM-FPU with the PICmicro®

Initialization Routine

fpu_reset Reset the uM-FPU

Parameters: none

Return: none

Description: This routine must be called at the start of every application. The uM-FPU is reset to its
startup condition and communication between the PIC and the uM-FPU is established.
All uM-FPU registers are initialized to NaN (Not a Number) at reset, therefore any
operation that uses a register before a value has been stored in the register will produce a
result of NaN.

Example:
call fpu_reset ;reset the uM-FPU coprocessor

Appendix A – Reference for PICmicro® routines

Micromega Corporation 19 Using the uM-FPU with the PICmicro®

Data Transfer Routines

fpu_readByte Read byte from the uM-FPU

Parameters: none

Return: W register, dataByte 8-bit value read from uM-FPU

Description: Reads an 8-bit value from the uM-FPU. This routine is used after a uM-FPU instruction
that results in data being sent to the PIC.

Example:
call readstr ;setup to read string
call fpu_readByte ;read the next character
btfsc STATUS, Z ;check for zero terminator
return ;yes, then exit
…

fpu_sendByte Send byte to the uM-FPU

Parameters: W register 8-bit value to send to uM-FPU

Return: none

Description: Sends an 8-bit value to the uM-FPU. This routine is used after a uM-FPU instruction that
requires additional data.

Example:
inputValue res 1 ;8-bit variable

call load_floatByte ;load inputValue to Register 0
movf inputValue, w ; and convert to float
call fpu_sendByte

Appendix A – Reference for PICmicro® routines

Micromega Corporation 20 Using the uM-FPU with the PICmicro®

Print Routines

print_float Send a floating point value to the serial port

Parameters: none

Return: none

Description: The floating point representation of the A register value is output to the serial port. Up to
eight significant digits will be displayed if required. Very large or very small numbers
are displayed in exponential notation. The length of the displayed value is variable and
can be from 3 to 12 characters in length. The special cases of NaN (Not a Number),
+infinity, -infinity, and -0.0 are handled. Examples of the display format are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

Example:
call print_float ;print float value

print_floatFormat Send a formatted floating point value to the serial port

Parameters: W register format specification

Return: none

Description: The formatted floating point representation of the A register value is output to the serial
port. The format is specified as a decimal value passed in the W register. The tens digit
specifies the width of the display field and the ones digit specifies the number of decimal
points. If the floating point value is too large for the format specified, then asterisks will
be displayed. If the number of decimal points is zero, no decimal point will be displayed.
Examples of the display format are as follows:

Value in register A format Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

The maximum width of the field is 9 and the maximum number of decimal points is 6.
Example:

movlw .62 ;print float value with 6.2 format
call print_floatFormat

Appendix A – Reference for PICmicro® routines

Micromega Corporation 21 Using the uM-FPU with the PICmicro®

print_long Send a signed long integer value to the serial port

Parameters: none

Return: none

Description: The signed long integer representation of the A register value is output to the serial port..
The length of the displayed value is variable and can range from 1 to 11 characters in
length. Examples of the display format are as follows:

1
500000
-3598390

Example:
call print_long ;print long value

print_longFormat Send a formatted long integer value to the PC screen

Parameters: W register format specification

Return: none

Description: The formatted long integer representation of the A register value is output to the serial
port. The format is specified as a decimal value passed in the format variable. A value
between 0 and 15 specifies the width of the display field for a signed long integer. The
number is displayed right justified. If 100 is added to the format value the value is
displayed as an unsigned long integer. If the value is larger than the specified width,
asterisks will be displayed. If the width is specified as zero, the length will be variable.
Examples of the display format are as follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

The maximum width of the field is 15.
Example:

movlw .10 ;print long value with width of 10
call print_longFormat

Appendix A – Reference for PICmicro® routines

Micromega Corporation 22 Using the uM-FPU with the PICmicro®

print_fpuString Send a string read from the uM-FPU to the serial port

Parameters: none

Return: none

Description: A zero terminated string is read from the uM-FPU and sent to the serial port. (This
function is used by the print_float, print_floatFormat, print_long, and print_longFormat
routines.)

Example:
call version ;get the version string
call print_fpuString ;print the version string

print_string Send a string read from ROM to the serial port

Parameters: W register low byte of string address

Return: none

Description: A section of ROM is reserved for stored up to 256 bytes string data. A zero terminated
string is read from ROM and sent to the serial port.

Example:
movlw LOW message1 ;print message1
call print_string

print_hex32 Send a 32-bit hex string to the serial port

Parameters: dataByte to dataByte+3

Return: none

Description: The 32-bit value in dataByte is sent to the serial port as a hexadecimal string.

Example:
call read ;get floating point value
call print_hex32 ;display as hex

print_hex Send an 8-bit hex string to the serial port

Parameters: W register

Return: none

Description: The 8-bit value in the W register is sent to the serial port as a hexadecimal string.

Example:
movlw 0xFF ;get 8-bit value
call print_hex ;display as hex

Appendix A – Reference for PICmicro® routines

Micromega Corporation 23 Using the uM-FPU with the PICmicro®

print_hexDigit Send a 4-bit hex digit to the serial port

Parameters: W register

Return: none

Description: The lower 4-bit value of the W register is sent to the serial port as a hexadecimal digit.

Example:
movlw 0x0A ;get 4-bit value
call print_hexDigit ;display as hex

print_crlf Send a CR, LF to the serial port

Parameters: none

Return: none

Description: A carriage return and linefeed character is sent to the serial port.

Example:
call print_crlf ;send CRLF

print_byte Send an 8-bit byte to the serial port

Parameters: W register 8-bit value

Return: none

Description: The 8-bit value contained in the W register is sent to the serial port.
Example:

movlw 'P' ;send P to serial port
call print_byte

Micromega Corporation 24 R20041015

Appendix B
uM-FPU Opcode Summary

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

SELECTA 0x Select A register
SELECTB 1x x Select B register
WRITEA Either 2x yyyy zzzz Write register and select A
WRITEB Either 3x yyyy zzzz x Write register and select B
READ Either 4x yyyy zzzz Read register
SET Either 5x A = B
FADD Float 6x x A = A + B
FSUB Float 7x x A = A - B
FMUL Float 8x x A = A * B
FDIV Float 9x x A = A / B
LADD Long Ax x A = A + B
LSUB Long Bx x A = A -B
LMUL Long Cx x A = A * B
LDIV Long Dx x A = A / B
SQRT Float E0 A = sqrt(A)
LOG Float E1 A = ln(A)
LOG10 Float E2 A = log(A)
EXP Float E3 A = e ** A
EXP10 Float E4 A = 10 ** A
SIN Float E5 A = sin(A) radians
COS Float E6 A = cos(A) radians
TAN Float E7 A = tan(A) radians
FLOOR Float E8 A = nearest integer <= A
CEIL Float E9 A = nearest integer >= A
ROUND Float EA A = nearest integer to A
NEGATE Float EB A = -A
ABS Float EC A = |A|
INVERSE Float ED A = 1 / A

DEGREES Float EE Convert radians to degrees
A = A / (PI / 180)

RADIANS Float EF Convert degrees to radians
A = A * (PI / 180)

SYNC F0 5C Synchronization

FLOAT Long F1 0 Copy A to Register 0
Convert long to float

FIX Float F2 0 Copy A to Register 0
Convert float to long

FCOMPARE Float F3 ss Compare A and B
(floating point)

Appendix B – uM-FPU Opcode Summary

Micromega Corporation 25 Using the uM-FPU with the PICmicro®

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

LOADBYTE Float F4 bb 0 Write signed byte to Register 0
Convert to float

LOADUBYTE Float F5 bb 0 Write unsigned byte to Register 0
Convert to float

LOADWORD Float F6 wwww 0 Write signed word to Register 0
Convert to float

LOADUWORD Float F7 wwww 0 Write unsigned word to Register 0
Convert to float

READSTR F8 aa … 00 Read zero terminated string from
string buffer

ATOF Float F9 aa … 00 0 Convert ASCII to float
Store in A

FTOA Float FA ff Convert float to ASCII
Store in string buffer

ATOL Long FB aa … 00 0 Convert ASCII to long
Store in A

LTOA Long FC ff Convert long to ASCII
Store in string buffer

FSTATUS Float FD ss Get floating point status of A
FUNCTION FE0n User functions 0-15
FUNCTION FE1n User functions 16-31
FUNCTION FE2n User functions 32-47
FUNCTION FE3n User functions 48-63
LWRITEA Long FEAx yyyy zzzz Write register and select A
LWRITEB Long FEBx yyyy zzzz 0 Write register and select B
LREAD Long FECx yyyy zzzz Read register
LUDIV Long FEDx 0 A = A / B (unsigned long)
POWER Float FEE0 A = A ** B
ROOT Float FEE1 A = the Bth root of A
MIN Float FEE2 A = minimum of A and B
MAX Float FEE3 A = maximum of A and B

FRACTION Float FEE4 0 Load Register 0 with the
fractional part of A

ASIN Float FEE5 A = asin(A) radians
ACOS Float FEE6 A = acos(A) radians
ATAN Float FEE7 A = atan(A) radians
ATAN2 Float FEE8 A = atan(A/B)

LCOMPARE Long FEE9 ss Compare A and B
(signed long integer)

LUCOMPARE Long FEEA ss Compare A and B
(unsigned long integer)

LSTATUS Long FEEB ss Get long status of A
LNEGATE Long FEEC A = -A
LABS Long FEED A = |A|
LEFT FEEE Right parenthesis
RIGHT FEEF 0 Left parenthesis

Appendix B – uM-FPU Opcode Summary

Micromega Corporation 26 Using the uM-FPU with the PICmicro®

Opcode Name
Data
Type

Opcode Arguments Returns
B

Reg
Description

LOADZERO Either FEF0 0 Load Register 0 with zero
LOADONE Float FEF1 0 Load Register 0 with 1.0
LOADE Float FEF2 0 Load Register 0 with e
LOADPI Float FEF3 0 Load Register 0with pi

LONGBYTE Long FEF4 bb 0 Write signed byte to Register 0
Convert to long

LONGUBYTE Long FEF5 bb 0 Write unsigned byte to Register 0
Convert to long

LONGWORD Long FEF6 wwww 0 Write signed word to Register 0
Convert to long

LONGUWORD Long FEF7 wwww 0 Write unsigned word to Register 0
Convert to long

IEEEMODE FEF8 Set IEEE mode (default)
PICMODE FEF9 Set PIC mode
BREAK FEFB Debug breakpoint
TRACEOFF FEFC Turn debug trace off
TRACEON FEFD Turn debug trace on
TRACESTR FEFE Send debug string to trace buffer
CHECKSUM FEFF 0 Calculate code checksum

VERSION FF Copy version string to string
buffer

Notes:
Data Type data type required by opcode
Opcode hexadecimal opcode value
Aruments additional data required by opcode
Returns data returned by opcode
B Reg value of B register after opcode executes
x register number (0-15)
n function number (0-63)
yyyy most significant 16 bits of 32-bit value
zzzz least significant 16 bits of 32-bit value
ss status byte
bb 8-bit value
wwww 16-bit value
aa … 00 zero terminated ASCII string

Micromega Corporation 27 R20041015

Appendix C
Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of
precision to fit the scale of the number. Fixed point numbers can’t handle very large or very small numbers
and are prone to loss of precision when numbers are divided. The representation of floating point numbers
used by the uM-FPU is defined by the IEEE 754 standard.
The range of numbers that can be handled by the uM-FPU is approximately ± 1038.53.
.
IEEE 754 32-bit Floating Point Representation

IEEE floating point numbers have three components: the sign, the exponent, and the mantissa. The sign
indicates whether the number is positive or negative. The exponent has an implied base of two. The
mantissa is composed of the fraction.

The 32-bit IEEE 754 representation is as follows:

Exponent MantissaS

31 30 23 22 0

Sign Bit (S)
The sign bit is 0 for a positive number and 1 for a negative number.

Exponent
The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that
allows it to represent both positive and negative exponents. For example, if the exponent field is
128, it represents an exponent of one (128 – 127 = 1). An exponent field of all zeroes is used for
denormalized numbers and an exponent field of all ones is used for the special numbers +infinity,
-infinity and Not-a-Number (described below).

Mantissa
The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers
there is an implied leading bit equal to one.

Special Values

Zero
A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and
–0 are distinct values although they compare as equal.

Denormalized
If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended
range and a graceful transition towards zero on underflows. Note: The uM-FPU does not
support operations using denormalized numbers.

Infinity
The values +infinity and –infinity are denoted with an exponent of all ones and a fraction of
all zeroes. The sign bit distinguishes between +infinity and –infinity. This allows operations
to continue past an overflow. A nonzero number divided by zero will result in an infinity
value.

Appendix C – Floating Point Numbers

Micromega Corporation 28 Using the uM-FPU with the PICmicro®

Not A Number (NaN)
The value NaN is used to represent a value that does not represent a real number. An
operation such as zero divided by zero will result in a value of NaN. The NaN value will flow
through any mathematical operation. Note: The uM-FPU initializes all of its registers to NaN
at reset, therefore any operation that uses a register that has not been previously set with a
value will produce a result of NaN.

Some examples of IEEE 754 32-bit floating point values displayed as four byte values are as follows:

0x00, 0x00, 0x00, 0x00 ;0.0
0x3D, 0xCC, 0xCC, 0xCD ;0.1
0x3F, 0x00, 0x00, 0x00 ;0.5
0x3F, 0x40, 0x00, 0x00 ;0.75
0x3F, 0x7F, 0xF9, 0x72 ;0.9999
0x3F, 0x80, 0x00, 0x00 ;1.0
0x40, 0x00, 0x00, 0x00 ;2.0
0x40, 0x2D, 0xF8, 0x54 ;2.7182818 (e)
0x40, 0x49, 0x0F, 0xDB ;3.1415927 (pi)
0x41, 0x20, 0x00, 0x00 ;10.0
0x42, 0xC8, 0x00, 0x00 ;100.0
0x44, 0x7A, 0x00, 0x00 ;1000.0
0x44, 0x9A, 0x52, 0x2B ;1234.5678
0x49, 0x74, 0x24, 0x00 ;1000000.0
0x80, 0x00, 0x00, 0x00 ;-0.0
0xBF, 0x80, 0x00, 0x00 ;-1.0
0xC1, 0x20, 0x00, 0x00 ;-10.0
0xC2, 0xC8, 0x00, 0x00 ;-100.0
0x7F, 0xC0, 0x00, 0x00 ;NaN (Not-a-Number)
0x7F, 0x80, 0x00, 0x00 ;+inf
0xFF, 0x80, 0x00, 0x00 ;-inf

